shankar量子力学原理个人笔记#1
关于shankar《principles of quantum mechanics》的读书笔记(半抄书。
因为在知乎看到了别人写的抄书笔记所以自己也想着来写了。在大白纸上写过一遍后还是感觉很容易忘记学过了什么,再加上常年把纸装在包里已经破破烂烂的了,很担心笔记说不定哪一天就拜拜了(。
于是在博客里再整理一下,权当复习。
!!!NOTICE:我是直接抄的英文书,可能有空会翻译一下,也会写写自己的一些理解,有的部分英语突然蹩脚那大概也是我自己写的英文理解,但是由于本人水平非常非常菜又是自学,所有的部分不建议各位完全相信。
以上!正式开始
1.Mathematical Introduction
1.1 Linear Vector Spaces
missing the requirements that every vector have a magnitude and direction.
Definition 1 A linear vector space\mathbb{V} is a collection of objects |1\rangle,|2\rangle,\dots|v\rangle,\dots|w\rangle,\dots,called vectors,for which there ecists.
-
vector sum:|v\rang+|w\rang
-
multiplication by scalars:a|v\rangle
-
|v\rang+|w\rang \in \mathbb{V}
- distributive:a(|v\rang+|w\rang)=a|v\rang+a|w\rang
(a+b)|v\rang=a|v\rang+b|v\rang - associative:a(b|v\rang)=ab|b\rang
- commutativa:|v\rang+|w\rang=|w\rang+|v\rang
|v\rang+(|w\rang+|z\rang)=(|v\rang+|w\rang)+|z\rang - null vector:|v\rang+|0\rang=|v\rang[exists]
- inverse:|-v\rang+|v\rang=|0\rang[exists]
- distributive:a(|v\rang+|w\rang)=a|v\rang+a|w\rang
Definition 2 The numbers a,b,\dotsare called the field over which the veotor space is defined.
- |0\rang is unique
- 0|v\rang=|0\rang
- |-v\rang=-|v\rang
- |-v\rangis unique for |v\rang
\vec{v}\neq|v\rang
Definition 3 linearly independent and linearly dependent.
Definition 4 A vector space has demendion n if it can a commodate a maximum of n linearly independent vectors. It will be denoted by \mathbb{V}^n(R) if the field is real and by \mathbb{V}^n(C) if the field is complex.
Theorem 1 Any vector |v\rang in a n-dimensional space can be written as a linearly combination of n linearly independent vevtors |1\rang\dots|n\rang.
Definition 5 A set of n linearly independent vectors in an n-dimensional space is called a basis.
Definition 6 The coefficients of expansion v_i of a vector in terms of a linearly independent basis are called the components of the vector in that basis.
Theorem 2 The expansion in \sum\limits_{n=1}^n a_n|n\rang=|0\rang is unique.
1.2 Inner Product Spaces
like \vec{A}\cdot\vec{B}=A_xB_x+A_yB_y+A_zB_z :for |v\rang and |w\rang we donote it by symbol \lang v|w\rang .
- skew-symmetry \lang v|w\rang=\lang w|v\rang^* .
- positive semidefiniteness \lang v|v\rang \ge 0 ,0 iff |v\rang=|0\rang .
- \lang v|(a|w\rang +b|z\rang)\equiv\lang v|aw+vz\rang =a\lang v|w\rang+b\lang v|z\rang
Definition 7 A vector space with an inner product is called an inner product space.
Definiton 8 We say that two vectors are orthogonal or perpendicualr if their inner profuct vanishes.
Definition 9 We will refer to \sqrt{\lang v|v\rang} \equiv|v| as the norm or length of the vector. A normalized vector has unit norm.
Definiton 10 A set of basis vectors all of unit norm,which are pariwise orthogonal will be called an orthonormal basis.
Given|v\rang=\sum\limits_j|i\rangand|w\rang=\sum\limits_j|j\rang, then \lang v|w\rang=\sum\limits_i\sum\limits_j v_i^*w_j\lang i|j\rang
Theorme 3 Given a linearly independent basis, we can form linear cobinations of the bsis vectoers to obtain an orthonmal basis.
If |i\rang and |j\rang is orthonormal, then \lang i|j\rang =\{\begin{aligned}1\quad&for\quad i=j\\0\quad &for\quad i\neq j\end{aligned}\equiv\delta_{ij}.
So, the double sum collapses:\lang v|w\rang=\sum\limits_iv_i^*w_i.
|v\rang is uniquely specified by its components in a given basis:|v\rang\rightarrow\begin{bmatrix}v_1\\ v_2\\ \vdots \\ v_n\end{bmatrix}
likewise: |w\rang\rightarrow\begin{bmatrix}w_1\\ w_2\\ \vdots \\ w_n\end{bmatrix}
so \lang v|w\rang=\begin{bmatrix}v_1^*&v_2^*&\dots &v_n^*\end{bmatrix}\begin{bmatrix}w_1\\2_2\\ \vdots\\ w_n\end{bmatrix}
1.3 Dual Spaces and the Ditac Notation
adjoint\rightarrow or transpose conjugate
the rules for taking the adjoint:
- like: |v\rang =\sum\limits_{i=1}v_i|i\rang\rightarrow\lang v|=\sum\limits_{i=1}\lang i|v_i^*
|v\rang=\sum\limits_{i=1}|i\rang\lang i|v\rang\rightarrow\lang v|=\sum\limits_{i=1}\lang v|i\rang\lang i| - from: reverse the order of all factors, exchanging bars and kets, and complex conjugating all coefficients.
Cram-Schmidt Theorem: converting a linear independent basis into an orthonormal one.
clearly
then
clearly
then
subtract from the second vector its projection along the first.
Thorme 4 The dimensionality of a space equals n_{\perp} , the maximum number of mutually orthogonal vectors in it.
Theorme 5 The Schwarz Inequality|\langle V|W\rangle|\leq|V||W|
Theorme 6 The Triangle Inequality|V+W|\leq|V|+|W|
1.4 Subspace
Definition 11 Given a vector space \mathbb{V} a subset of its elements that form a vector space among themselves is called a subspace. We will denote a particular subspace i of dimensionality n_i by \mathbb{V}^{n_i}_i.
Definition 12 Given two subspaces \mathbb{V}^{n_i}_i and \mathbb{V}^{m_j}_j, we define their sum \mathbb{V}^{n_i}_i \oplus \mathbb{V}^{m_j}_j=\mathbb{V}^{m_k}_k as the set containing:
- all elements of \mathbb{V}^{n_i}_i,
- all elements of \mathbb{V}^{m_j}_j,
- all possible linear combinations of the above. But for the elements 3, closure would be lost.
1.5 Linear Operators
An operator \Omega is an instruction for transforming any given vector |v\rang into another, |v^{\prime}\rang. Follows:\Omega{|V\rangle=|V^{\prime}\rangle}
We only be concerned with linear operators.
Example: I\rightarrowLeave the vector alone
(作者可爱捏><)
and:\bold{R}(2\pi i)\rightarrowRotate vector by 2\pi about the unit vector i
The order of the operators in a product is important: \Omega\Lambda-\Lambda\Omega\equiv[\Omega,\Lambda] called the commutator of \Omega and \Lambda.
It's nonzero = They do not commute.
useful identities:
The inverse of \Omega, donated by \Omega^{-1}: \Omega\Omega^{-1}=\Omega^{-1}\Omega=I
(\Omega\Lambda)^{-1}=\Lambda^{-1}\Omega^{-1}
1.6 Matrix Elements of Linear Operators
这一章是矩阵元,我觉得是比较重要的一章。字面来看就是指的算子中j行i列的元素。
\Omega|i\rangle=|i^{\prime}\rangle\rightarrow\langle j|i'\rangle=\langle j|\Omega|i\rangle\equiv\Omega_{ji}
\Omega_{ji} is a n^2 number. it is the matrix elements of \Omega.
projection operators: \mathbb{P}_{i}=|i\rangle\langle i| for |i\rang
completeness relation: I=\sum_{i=1}^{n}|i\rangle\langle i|=\sum_{i=1}^{n}\mathbb{P}_{i}
这是什么?完备关系!学一下!
名字听着怪叫什么什么关系的但是只给了一个等式,但是其实是蛮重要的,很多地方可以看到它。
\mathbb{P}_i projects out the component of any ket |v\rang along the direction |i\rang.
这个投影算符也是很重要的,注意投影算符是厄米算符,所以(虽然不知道为什么所以)它是正交投影,也就是说,对投影再做投影结果是不变的。
\lang v|v^{\prime}\rang: scalar--inner product
|v\rang\lang v^{\prime}|: operator--outer product
我觉得这里很有意思,它反而把内积和外积这两个称呼作为参考,正式称呼则是scalar和operator,我认为这两个称呼是更有意义的。
span:
这是什么?张成!是目前仍然觉得没有学会的东西(
The Adjoint of an operator: \lang\Omega V|=\lang V|\Omega^{\dagger}, as \lang av|=\lang v|a^*.
Hermitian, Anti - Hermitian, and Unitary Operators
Definition 13 An operator \Omega is Hermitian if \Omega^\dagger=\Omega.
Definition 14 An operator \Omega is anti-Hermitian if \Omega^\dagger=-\Omega.
operator | complex |
---|---|
adjoint | conjugate |
Hermitian | pure real number |
Anti-Hermitian | pure imaginary number |
\Omega=\frac{\Omega+\Omega^\dagger}2+\frac{\Omega-\Omega^\dagger}2, like \alpha=\frac{\alpha+\alpha^*}2+\frac{\alpha-\alpha^*}2
个人认为这里讲的非常妙,第一次理解了厄米算子和反厄米算子到底是什么意思。顺便这里接着对之前投影算符的说法,投影算符是厄米算符,所以有:
Definition 15 An operator U is unitary if UU^{\dagger}=I(inverses,like uu^*=1)
Theorem 7 Unitary operators preserve the inner product between the vectors they act on.
Unitary operators are the generalizations of rotation operators.
Theorem 8 If one treats the columns of an n\times n unitary matrix as components of n vectors, these vectors are orthonormal. In the same way, the rows may be interpreted as components of n orthonormal vectors.
1.7 Active and Passive Transformations
unitary transformation: |V\rangle\to U|V\rangle
大名鼎鼎的幺正变换,又即酉算子。看起来平平无奇但是也非常重要。
- active transformation:\langle V^{\prime}|\Omega|V\rangle\to\langle UV^{\prime}|\Omega|UV\rangle=\langle V^{\prime}|U^{\dagger}\Omega U|V\rangle
- passive transformation:\Omega\rightarrow U^\dagger\Omega U
1.8 The Eigenvalue Problem
个人觉得很难看懂的一节,但是非常非常重要。特征值意味着它在变换中只会伸缩,这是非常重要的性质。可以参考3blue1brown做的可视化线性代数,理解特征值的重要意义,只看特征值这一节也行,但顺便一提全系列都很不错。
The eigenvalue problem, the action of it is simply that of vescaling:\Omega|V\rangle=\omega|V\rangle.
看了别的课程来这边补充一下,这个本征值具体在量子力学里怎么用呢?大概是这样的:
其中\hat{\Omega}是个厄米算符,然后就有
注意\omega_i是本征值。学过量子力学后的你对这个一定不陌生。
The Characteristic Equation and the Solution to the Eigenvalue Problem
(\Omega-\omega I)|V\rangle=|0\rangle\rightarrow |V\rangle=(\Omega-\omega I)^{-1}|0\rangle\rightarrow ^{(M^{-1}=\frac{\text{cofactor }M^T}{\det M})}\rightarrow det(\Omega-\omega I)=0\rightarrow \langle i|\Omega-\omega I|V\rangle=0\rightarrow \sum_j(\Omega_{ij}-\omega\delta_{ij})v_j=0
characteristic equation: \sum_{m=0}^{n}c_{m}\omega^{m}=0
characteristic polynomial: P^n(\omega)=\sum_{m=0}^nc_m\omega^m
Theorem 9 The eigenvalues of a Hermitian operator are real.
Theorem 10 To every Hermitian operator \Omega there exists (at least) a basis consisting of its orthonormal eigenvectors. It is diagonal in this eigenbasis and has its eigenvalues as its diagonal entries.
- eigenspace
Degeneracy
然而这一段我完全没看懂。整段垮掉。
Theorem 11 The eigenvalues of a unitary operator are complex numbers of unit modulus.
Theorem 12 The eigenvectors of a unitary operator are mutually orthogonal. (We assume there is no degeneracy.)
Diagonalization of Hermitian Matrices
If \Omega is a Hermitian matrix, there exists a unitary matrix U (built out of the eigenvectors of \Omega) such that U^{\dagger}\Omega U is diagonal.
Simultaneous Diagonalization of Two Hermitian Operators
Theorem 13. If \Omega and \Lambda are two commuting Hermitian operators, there exists (at least) a basis of common eigenvectors that diagonalizes them both.