shankar量子力学原理个人笔记#2
Review of Classical Mechanics
施工中,不知道什么时候能写完。
这一部分主要为理论力学部分。然而半理半工的鼠鼠并没有学过,最后选择三小时速通最小作用量原理。这一部分原书就写的比较简略,可能会写一点个人浅薄的理解,当然和我一样没有学过这一部分想要速通的可以考虑考虑知乎。
2.1 The Principle of Least Action and Lagrangian Mechanics
mass m, potential V(x), along the x axis:
we need to specify a unique x_{cl}(t)——Lagrangian approach.
confuguration space——Cartesian coordinates: m_j\frac{d^2x_j}{dt^2}=-\frac{\partial V}{\partial x_j}
Lagrangian function \mathscr{L}=T-V, notice that T is kinetic, V is potential energies, and it is velocity independent. Thus \mathscr{L}=\mathscr{L}(x,\dot{x},t).
For each path x(t) cormecting (x_i,t_i) and (x_f,t_f), the action S[x(t)]=\int^{t_f}_{t_i}\mathscr{L}(x,\dot{x})dt. The S here is functional.
principle of least action: The classical path is one on which S is a minimum.
Euler-Lagrange equation:
if we need into it \mathscr{L}=T=V, we will get Newton's Second Law.
cyclic coordinate: Suppose the Larangian depends on a certain velocity \dot{q_i} but not the corresponding coordinate q_i.